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Abstract
We investigate the non-equilibrium charge and spin-dependent currents in a quantum ring with
a Rashba spin–orbit interaction (SOI) driven by two asymmetric picosecond electromagnetic
pulses. The equilibrium persistent charge and persistent spin-dependent currents are
investigated as well. It is shown that the dynamical charge and the dynamical spin-dependent
currents vary smoothly with a static external magnetic flux and the SOI provides a SU(2)

effective flux that changes the phases of the dynamic charge and the dynamic spin-dependent
currents. The period of the oscillation of the total charge current with the delay time between
the pulses is larger in a quantum ring with a larger radius. The parameters of the pulse fields
control to a certain extent the total charge and the total spin-dependent currents. The
calculations are applicable to nanometre rings fabricated in heterojunctions of III–V and
II–VI semiconductors containing several hundreds of electrons.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The study of the spin–orbit interaction (SOI) in semiconductor
low-dimensional structures and its application for spintronics
devices have attracted much attention recently [1]. There are
two important kinds of SOI in conventional semiconductors:
one is the Dresselhaus SOI induced by bulk inversion
asymmetry [2], and the other is the Rashba SOI caused by
structure inversion asymmetry [3]. As pointed out in [4],
the Rashba SOI is dominant in a narrow gap semiconductor
system and the strength of the Rashba SOI can be tuned by an
external gate voltage in HgTe [5], InAs [6], Inx Ga1−x As [7],
and GaAs [3, 8] quantum wells. Recent research has focused
on the electrically induced generation of a spin-dependent
current (SC) mediated by SOI-type mechanism, e.g. as in the
intrinsic spin Hall effect in a three-dimensional (3D) p-doped
semiconductor [9] and in a two-dimensional (2D) electron
gas with Rashba SOI [10]. Here we study high quality
spin-interacting quantum rings (QRs) with a radius on the
nanometre scale [11, 12]. These systems show Aharonov–
Bohm-type (AB) spin-interferences [13, 14]. In particular we
investigate the dynamics triggered by time-dependent electric
fields as provided by time-asymmetric pulses [15] or tailored

laser pulse sequences [16]. The quantity under study is the
spin-resolved pulse-driven current, in analogy to the spin-
independent case [17–19]. In a previous work [20], we
investigated the dynamical response of the charge polarization
to the pulse application. No net charge or spin-dependent
current is generated because the clockwise and anti-clockwise
symmetry of the carrier is not broken by one pulse or a
series of pulses having the same linear polarization axis.
This symmetry is lifted if two time-delayed pulses with non-
collinear polarization axes are applied [17]. However, to
our knowledge all previous studies on light-induced currents
in quantum rings did not consider the coupling of the spin
to the orbital motion (and hence to the light field), which
is addressed in this work. As detailed below, having done
that, it is possible to control dynamically the spin-dependent
current in a 1D quantum ring with Rashba SOI by using two
time-delayed linearly polarized electromagnetic pulses. For
transparent interpretation of the results only the Rashba SOI
is considered in this work. The presence of the Dresselhaus
SOI may change qualitatively the results presented here for
the spin-dependent non-equilibrium dynamics of the carriers,
which can be anticipated from the findings for the equilibrium
case [21].
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2. Theoretical model

We study the response of charges and spins confined in a one-
dimensional (1D) ballistic QR with SOI to the application
of two short time-delayed linearly polarized asymmetric
electromagnetic pulses [17, 22]. The effective single-particle
Hamiltonian reads Ĥ ′ = ĤSOI + Ĥ1(t) [20], with

ĤSOI = p2

2m∗ + V (r) + αR

h̄
(σ̂ × p)z,

Ĥ1(t) = −er · E(t) + μBB(t) · σ̂ .

(1)

E(t) and B(t) are the electric and the magnetic fields of
the pulse. Integrating out the r dependence ĤSOI reads in
cylindrical coordinates [23–27]

ĤSOI = h̄ω0

2

[(
i∂ϕ + φ

φ0
− ωR

2ω0
σr

)2

−
(

ωR

2ω0

)2

+ ωB

ω0
σz

]
.

(2)
∂ϕ = ∂

∂ϕ
, φ0 = h/e is the flux unit, φ = Bπa2 is

the magnetic flux threading the ring, a is the radius of the
ring, h̄ω0 = h̄2/(m∗a2) = 2E0, h̄ωR = 2αR/a, h̄ωB =
2μB B and B are due to a possible external static magnetic
field B = B êz . The single-particle eigenstates of ĤSOI are
represented as 	 S

n (ϕ) = ei(n+1/2)ϕνS(γ, ϕ) where νS(γ, ϕ) =
(aSe−iϕ/2, bSeiϕ/2)T are spinors in the angle-dependent local
frame, and a↑ = cos(γ /2), b↑ = sin(γ /2), a↓ =
− sin(γ /2), b↓ = cos(γ /2), (T means transposed) where
tan γ = −Q R = −ωR/ω0 (if we ignore the Zeeman splitting
caused by the static magnetic field [27, 28]). γ describes
the direction of the spin quantization axis, as illustrated in
figure 1(a). The energy spectrum of the QR with the SOI
reads [20, 24–28]

E S
n = h̄ω0

2

[(
n − φ/φ0 + 1 − Sw

2

)2

− Q2
R

4

]
,

w =
√

1 + Q2
R = 1/ cos γ,

(3)

where S = +1 (S = −1) stands for spin up (spin down) in the
local frame.

3. Pulse-driven single-particle dynamics

We apply two time-asymmetric pulses to the system (see
figure 1(b)). The first one (at t = 0) propagates in the z
direction and has a duration τd. Its E-field is along the x
direction. τd is chosen to be much shorter than the ballistic
time of the carriers in which case the QR states develop
as [17, 22, 29]

	 S
n (ϕ, t > 0) = 	 S

n (ϕ, t < 0)eiα1 cos ϕ,

α1 = eap/h̄, p = −
∫ τd

0
E(t) dt,

(4)

where E(t) = F f (t), F and f (t) describe the amplitude
and the time dependence of the electric field of the pulse
respectively. In the following, we use F1 and F2 to characterize

(a) (b)

(c)

Figure 1. (a) A schematic graph of the geometry, spin configuration
and the applied pulses is shown. (b) Time-delayed asymmetric pulses
are schematically drawn. (c) Energy spectrum for a ring with
spin–orbit interaction. S defines the distance between the spectrum
symmetry axis and the smallest nearest integer.

the first and the second pulses. The pulse effect is encapsulated
entirely in the action parameter α1. With the initial conditions
n(t < 0) = n0 and S(t < 0) = S0 and using equations (4) one
finds

	 S0
n0

(ϕ, t) = 1√
2π

∑
ns

C S
n (n0, S0, t)ei(n+1/2)ϕe−iE S

n t/h̄ |νS〉,
(5)

with

C S
n =

{
δSS0δnn0 for t � 0,

δSS0 i
n0−n Jn0−n(α1) for t > 0,

(6)

where Jn is the nth order Bessel function. For the time-
dependent energy we find

E S0
n0

(t > 0) = E S0
n0

(t < 0) + h̄ω0

2

α2
1

2
, (7)

with E S0
n0

(t < 0) given by equation (3). Applying a second
pulse at t = τ with the same duration τd but the electric field
being along the y axis (see figure 1(b)), the wavefunctions
develop as 	 S0

n0
(ϕ, t > τ) = 	 S0

n0
(ϕ, t < τ)eiα2 sin ϕ , where

α2 is the action parameter associated with the second pulse.
	 S0

n0
(ϕ, t = τ−) follows from equation (5). For t > τ

the expansion coefficients behave as C S′
n′ (n0, S0, t > τ) =∑

n δS′S0[in0−n Jn0−n(α1) Jn′−n(α2)]ei(E S′
n′ −E

S0
n )τ/h̄ .

4. Non-equilibrium spin and charge currents

A single pulse does not generate in QR any net charge current
because of the degeneracy of the orbital states. However,
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the charge will be polarized [20, 22] and the corresponding
dipole moments oscillate in the x direction with an associated
optical emission. Applying a second pulse as described
above leads to a non-equilibrium net current, in addition
to the persistent charge current caused by the static flux
and the SOI which causes a SU(2) vector potential and
manifests itself in an induced spin-dependent persistent charge
current [27, 28, 30, 31]. Consequently, a non-equilibrium spin-
dependent current is induced.

The line velocity operator is [32]

v̂ϕ = êϕ

{ −ih̄

m∗a
∂ϕ − h̄

m∗a

φ

φ0
+ αR

h̄
σr

}

which is associated with the operator of the angular velocity
v̂ϕ/a [33]. Contributions to the persistent charge current from
each QR level read [34]

In0,S0 = 1

2π

∫ 2π

0
dϕ

∫ r2

r1

dr jϕn0,S0
(r′, t > τ),

where
jϕn0,S0

= e Re[	 S0,†
n0

(r′, t)v̂ϕ	 S0
n0

(r′, t)].

Upon algebraic manipulations we find

In0,S0(t > τ) = I(0)

n0,S0
(t > τ) + I(1)

n0,S0
(t > τ). (8)

The index ‘(0)’ stands for the static persistent charge current
(PCC) which exists in the absence of pulse field, whereas the
index ‘(1)’ indicates the pulse-induced dynamic charge current
(DCC). The PCC is caused by a magnetic U(1) flux and has
been studied extensively [35] without [34, 36, 37] or with the
spin interactions [33]. It has been experimentally observed
both in gold rings of radius 1.2 and 2.0 μm [38] and in a GaAs–
AlGaAs ring of radius about 1 μm [39]. The SOI scattering
effects were also studied [40]. The PCC carried by the states
characterized by n0 and S0 reads (please note the current in this
work is defined as flow of positive charges, which is opposite
to the direction of the flow of electrons)

I(0)
n0,S0

(t > τ) = êϕ I0

(
n0 − φ

φ0
+ 1 − S0w

2

)
, (9)

where I0 = 2E0a/φ0 is the unit of CC, the second term on the
right-hand side of equation (9) stems from the static magnetic
field; the third term is a consequence of the SU(2) flux of the
SOI [27]. The DCC part is

I(1)
n0,S0

(t > τ) = êϕ I0{α2〈cos ϕ〉S0
n0

(τ )}, (10)

where

〈cos ϕ〉S0
n0

(τ ) = α1h(�τ1) sin bτ

× cos

[
2

(
n0 − φ

φ0
+ 1 − S0w

2

)
bτ

]
,

bτ = ω0τ/2, �τ1 = α1

√
2(1 − cos(2bτ )),

h(�τ1) = J0(�τ1) + J2(�τ1).

To obtain the total persistent charge current and the
dynamic current we have to consider the spin-resolved

occupations of the single-particle states. For simplicity we
operate at zero temperatures and ignore the relaxation caused
by phonons or other mechanisms, i.e. we confine ourselves to
times shorter than the relaxation time. The general case can be
developed along the lines of [41].

At first we introduce an effective flux as

φS = φ − φ0
1 − Sw

2
. (11)

As evident from equations (3) the spectrum is symmetric with
respect to xS = φS/φ0. Further, we define the shift S =
xS − l(l ′), where S = ↑ or ↓. Here l(l ′) = [x↑(↓)] where [x]
means the nearest integer which is less than x . S is shown
in figure 1. When S = 1, it is equivalent to S = 0.
Furthermore, ̄S = |1/2 − S| is the distance between the
xS and the nearest half integer.

4.1. Spinless particles

For N spinless particles we distinguish two cases: N is an even
or an odd integer.
Case (1). If N is an even integer then

I (0)
even() = sgn()N

(
1
2 − 

)
,

I (1)
even() = α1α2h(�τ1) sin(Nbτ ) cos(1 − 2)bτ ,

(12)

where sgn(x) equals +1, for x > 0; 0 for x = 0, and −1 for
x < 0.
Case (2). If N is an odd integer then

I (0)

odd() = −sgn() sgn
(

1
2 − 

)
N

(
1
2 − ̄

)
,

I (1)
odd() = α1α2h(�τ1) sin(Nbτ ) cos(1 − 2̄)bτ .

(13)

4.2. Particles with 1/2 spin

For spin 1/2 particles we consider four cases.
Case (0). For an even number of particle pairs, i.e. N = 4m,
where m is an integer we find

I (0)
S (S) = I (0)

even(S), I (1)
S (S) = I (1)

even(S). (14)

Case (1). For an odd number of particle pairs, i.e. N = 4m +2
we obtain

I (0)
S (S) = I (0)

odd(S), I (1)
S (S) = I (1)

odd(S). (15)

Case (2). For an even number of pairs plus one extra particle,
i.e. N = 4m + 1 (there is one particle whose spin is unpaired
as compared with case (0)) we find

I (0)
ext,S(S) = −sgn(S) sgn

(
1
2 − S

)
×

(
N − 1

4
+ 1

2
− ̄S

)
,

I (1)
ext,S(S) = α1α2h(�τ1) sin(bτ )

× cos

(
N − 1

2
+ 1 − 2̄S

)
bτ .

(16)

To determine which spin state is occupied by the extra particle
one compares the distance of the symmetric axis to the nearest
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half integral axis, i.e. ̄S . The one with the larger distance will
be occupied.
Case (3). For an odd number of pairs plus one extra particle,
i.e. N = 4m + 3. Here we use case (1) and determine the
contribution to the current from the extra particle

I (0)
ext,S(S) = sgn(S) sgn

(
1
2 − S

)
×

(
N − 3

4
+ 1

2
+ ̄S

)
,

I (1)
ext,S(S) = α1α2h(�τ1) sin(bτ )

× cos

(
N − 3

2
+ 1 + 2̄S

)
bτ .

(17)

Which spin state is occupied by the extra particle is governed
by ̄S . The level with the smaller ̄S is populated.

5. Spin-dependent current (SC)

In the presence of a static magnetic field and the SOI but in
the absence of the pulse field, the PCC is accompanied by a
persistent SC (PSC). Switching on the pulse field generates
a spin-dependent charge current due to the SOI, and also a
dynamic SC (DSC) that can be controlled by the parameters
of the pulse field. The SC density is

js
n0,S0

(r′, t) = Re{	 S0,†
n0

(r′, t)v̂′ ŝ	 S0
n0

(r′, t)},

where
ŝ = (h̄/2)σ̂zδ(r′ − r)

is the local spin density. The SC associated with level n0, S0 is

Is
n0,S0

(t > τ) = 1

2π

∫ 2π

0
dϕ

∫ r2

r1

dr ′ js
n0,S0

(r′, t) (18)

and can be evaluated as

Isz
n0,S0

= Is0 Re
∑

n

|C S0
n (n0, S0, t)|2 DS0

1n, (19)

where
Is0 = êϕ E0a/(2π)

sets the unit SC and

DS0
1n = [

(aS0)2 − (bS0)2
] (

n − φ

φ0

)
− (bS0)2. (20)

Here
(aS0)2 − (bS0)2 = S0 cos γ,

and S0 = ±1. The SC after applying two pulses to the ring is
a sum of two parts

Isz
n0,S0

(t > τ) = Isz,(0)

n0,S0
(t > τ) + Isz,(1)

n0,S0
(t > τ), (21)

where

Isz,(0)

n0,S0
(t > τ) = Is0[S0 cos γ ]

[(
n − φ

φ0

)
+ 1

2
− S0

2 cos γ

]
,

= Is0[S0 cos γ ] I (0)
n0,S0

(t > τ)

I0
, (22)

is the static PSC [27] and the DSC part is

Isz ,(1)

n0,S0
(t > τ) = Is0[S0 cos γ ][α2〈cos ϕ〉n0,S0(τ )],

= Is0[S0 cos γ ] I (1)
n0,S0

(t > τ)

I0
. (23)

Summing over all occupied energy levels we find

Isz

S0
(t > τ) = Isz ,(0)

S0
(t > τ) + Isz,(1)

S0
(t > τ), (24)

where (I (0),(1)

S0
(t > τ) are PCC and DCC)

Isz ,(0),(1)

S0
(t > τ) = Is0[S0 cos γ ] I (0),(1)

S0
(t > τ)

I0
. (25)

6. Numerical results and discussions

We performed calculations for pulse-driven ballistic quantum
rings fabricated by an appropriate confinement in a quantum
well of InxGa1−xAs/InP [42]. Our results are also valid for
other III–V or II–VI semiconductor quantum rings with spin
orbit, e.g. a GaAs–AlGaAs quantum well, or HgTe/HgCdTe
quantum ring [43]. We shall present the total charge current
(TCC) which is a sum of PCC and DCC over all the occupied
states. Total spin-dependent current (TSC) is obtained in the
same way [28].

Figure 2 shows how the flux and the SOI affect the PCC,
DCC and TCC. Without the SOI, the jump of the PCC occurs
at integer flux for even pair occupation, shown in figure 2. The
jumps are different in other occupations (see [28]), here we
only focus on the even pair occupation case for clarity. The
periodic sawtooth dependence of the PCC on the flux has been
studied before, e.g. [27, 28]. At finite SOI the jumps in PCC
are shifted to φ/φ0 = l + (1 ∓ w)/2; the two jumps are
the consequences of a superposition of the contributions from
the two spin channels. When the SOI strength is such that
γ = − arccos(1/2n), (n = 1, 2, . . .) the two jumps become at
the half integer which is just the case of 4n+2 occupation in the
absence of the SOI [28]. The slope ratio between the two jumps
is the same. As can be inferred from the analytic expressions,
DCC (cf figure 2) depends smoothly on the flux. SOI results
in a phase shift moving or even exchanging the positions of
the minima and maxima, as for γ = −60◦. The origin of the
shape of TCC is deduced from those of PCC and DCC. Here
the magnitudes of the two contributions is crucial. The PCC
magnitude is related to the numbers of charge carriers, while
the DCC magnitude is determined primarily by the product of
the α1 and α2 (that can be externally varied by changing the
pulse intensities), the delay time τ , and the ring radius.

Figure 3 shows the TCC dependence on the ring radius
(in the absence of the SOI). As expected, a larger α enhances
the DCC. On the other hand, α enters the Bessel function
argument whose increase suppresses the magnitude of DCC. It
can be shown that the period of the oscillation with τ increases
with increasing the radius. The magnitudes of the maxima and
minima are larger with larger radius.

Now we discuss the spin-dependent current projected onto
the z direction [27], i.e. I sz . The spin-dependent current
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Figure 2. Persistent charge current (PCC), dynamic charge current (DCC) and total charge current (TCC) are shown in (a), (b) and (c),
respectively. The spin orbit angles are γ = 0◦,−20◦,−40◦ and −50◦ for the solid lines, the dashed lines, the dotted lines and the
dashed-dotted lines respectively in all graphs. The other parameters are N = 100, a = 100 nm, τ = 26.3 ps, F1 = F2 = 1 kV cm−1.

Figure 3. Contour plots of TCC on φ and τ are shown for different radii of the ring. a = 100 nm, 200 nm, 300 nm and 400 nm in (a), (b), (c)
and (d), respectively. The other parameters are N = 100, γ = 0◦, F1 = F2 = 500 V cm−1.

projected onto the γ direction (e.g. the quantization axis of the
local spin frame) is I sz = I γ cos γ [28].

PSC possesses steps at PCC jumps (figure 4(a)) as a
function of φ. This can be understood from the ratio of PCC for
different spins; the SOI only introduces a relative effective flux
shift (see equation (11)) leading to a constant spin-dependent
current between the jumps. For DSC versus φ (figure 4(b)) the
effective flux leads to a shift of the DSC along the flux axis.
The physics behind this shift is that SOI provides a SU(2) flux,
meaning that the pulse-driven (local frame) spin up electrons
experience a different flux than those with down spin, leading
to a substantial spin-dependent current. In contrast, a static
magnetic flux does not induce a spin-dependent current in the

absence of the SOI. This shift and the jumps in the step function
of the PSC explain the behaviour of TCC in figure 4(c).

The control of TCC and TSC by tuning the pulse-field
parameters is demonstrated in figure 5. Because the two
pulses transfer a net angular momentum setting the electrons
in motion but they do not couple directly to the spins, the
TCC and TSC show the same pattern with τ and F . From
an experimental point of view it is essential to note that
we are dealing with non-equilibrium quantities which opens
the way for their detection via their emission, e.g. the TCC
and TSC can be detected by measuring the current-induced
magnetization of the ring and the generated electrostatic
potential [44].

5
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Figure 4. PCC and PSC, DCC and DSC, and TCC and TSC are shown in (a), (b) and (c), respectively. The solid lines are the charge current,
and the dashed lines are the spin current. γ = −40◦, the other parameters are the same as in figure 2.

Figure 5. TCC (a) and TSC (b) versus pulse strengths F1 = F2 and delay time τ . γ = −40◦, φ = 0.2. Other parameters are N = 100,
a = 400 nm.

7. General and concluding remarks

In the presence of spin–orbit coupling, two time-delayed
appropriately shaped electromagnetic pulses generate spin-
dependent charge currents. As shown previously for the spin-
independent case [17], the sign of the current and its magnitude
are controllable via the delay time and the strengths of the
pulses. From a symmetry viewpoint, similar phenomena may
be expected to occur for other geometries (wires, squares,
etc). However, as shown for unbiased superlattices [45]
(without SOI) details of the generated currents may differ
qualitatively. Application of an appropriate train of pulses
opens the possibility of controlling or even stopping the
current [41]. For increasing the magnitude of the current more
intense pulses should be applied.

For generating currents in quantum rings one may also
apply circular polarized laser pulses [18, 19]. In this context
we note the following: from an electrodynamics point of view,
generating currents by our pulses is a completely classical
effect, i.e. currents are generated in a completely classical

system, even though in our case the subsequent excited carrier
evolution is quantum mechanical. For this reason our current
is robust to disorder and geometry modifications. In addition,
the tunable time delay between the pulses allows an ultra-fast
control of the current properties. Using circularly polarized
laser pulses generates currents for quantized systems (in which
case the rotating-wave approximation can be applied). For
systems with level broadening of the order of level spacing, no
appreciable current is generated. Our disadvantage, however,
is that our pulses are much more demanding to realize
experimentally, whereas laser pulses are readily available, in
particular at high light intensities, thus allowing for a strong
current generation.

The DSC is proportional to the DCC which can be
comparable to the PCC for the small or moderate occupation
number case as seen in figure 4(b). The DCC depends
sensitively and dramatically on the strength of the field and
the delayed time between the two pulses. We provide now
an explicit calculation for the typical values of the CC and
SC. For the Inx Ga1−x As/InP quantum well [42] we have

6
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m∗ = 0.037m0. For a ring with radius of 100 nm, the
line velocity is then about 5000 m s−1, and the current unit
is I0/a ∼ 8 nA which corresponds to the angular velocity
current for one particle. If we convert this into the unit of
an induced magnetization it is a radius-independent quantity
M0 ≈ 2 meV T−1 (here we use the formula M0 ≈ πa2(I0/a)

valid for the rings considered here [17]).
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